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nature of the interaction between two robots. This interaction
is in a feedback foml and will be clarified with the help of
Figure 1. We will note later that the results of the nonlinear
analysis do not depend on this assumption, and one can
extend the obtained results to cover the case when G(e) and
S(f) do not superimpose. The motion of the robot end-point
in response to imposed forces, f, is caused either by
structural compliance in the robot or by the compliance of
the positioning controller. In a simple example, if a Remote
Center Compliance (RCC) with a linear dynamic behavior
is installed at the end-point of the robot, then S is equal to the
reciprocal of stiffness (impedance in the dynamic sense) of
the RCC. Robots with tracking controllers are not infInitely
stiff in response to external forces (also called
disturbances). Even though the positioning controllers of
robots are usually designed to allow the robots to follow the
trajectory commands and reject disturbances, the robot end-
point will move somewhat in response to imposed forces on
it. S is called the sensitivity function and it maps the
external force to the robot end-point position. For a robot with
a "good" positioning controller, S is a mapping with small
gain. No assumption on the internal structures of G(e) and
S(f) is made. We define s-' as inverse function of the S
function:

f -S-1(y-G(e)) (2)

D~amics of Two Robots
Suppose two manipulators with dynamic equation 1

are in contact with each other. Equations 3 and 4 represent
the entire dynamic behavior of two interacting robots.

y,-G,(e,)+S,(f,) (3)

f2 -S2-'(Y2-G2(e2)) (4)

where: y,- Y2 and f, --f2

Figure 1 shows the block diagram of the interaction of two
robots. Note that the blocks in Figure 1 are in general non.
linear operators, however, in the linear case one can treat
these blocks as transfer function matrices.
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Figure 1: Interaction of Two Robots

If all the operators of the block diagrams in Figure 1 were
transfer function matrices, then the contact force, f2' could
be calculated from equation 5.

f2- (5,+52)-' (G,e,-G2 e2) (5)
Equation 5 motivates the block diagram of Figure 2 for
representation of the contact force in the system where V,
and V2 are given by equations 6 and 7.

Abstract
The work presented here is the description of the

control strategy of two cooperating robots. A two-finger
hand is an example of such a system. TIle control method
allows for position control of the contact point by one of the
robots while the other robot controls the contact force. The
stability analysis of two robot manipulators has been
investigated using unstructured models for dynamic
behavior of robot manipulators. For the stability of two
robots, there must be some initial compliancy in either
robot. The initial compliancy in the roboti. can be obtained
by a non-zero sensitivity function for the tracking controller
or a passive compliant element such as an RCC.

Introduction
This paper develops the essential rules in stability

analysis of two cooperating robots. We assume the robots
initially have some type of independent tracking
capabilities. This assumption permits IllS to extend the
control analysis to cover industrial robot manipulators in
addition to research robots. The tracking capability allows
each robot to follow its individual command independently
when it is not constrained by each other. Once the robots
come in contact with each other, the contact force between the
two robots is fed back to one of the rlobots to develop
compliancy (1,2,3,4). The compliancy in one of the robots
allows for control of the contact force, whiile the other robot
governs the position of the contact point. A stability bound
has been developed on the size of the force feedback gain to
stabilize the closed loop system of both robots. The stability
analysis has been investigated using unstructured models
for the dynamic behavior of the robot m:anipulators. This
unified approach of modeling robot dynamics is expressed
in terms of sensitivity functions as opposed to the
Lagrangian approach. It allows us to incorporate the
dynamic behavior of all the elements of a robot manipulator
(i.e. actuators, sensors and the structural c:ompliance of the
links) in addition to the rigid body dynamics(4).

D~amic Mode1 of the Robot
In this section, a general approach will be developed

to describe the dynamic behavior of a large class of
industrial and research robot manipulators having
positioning (tracking) controllers. The fact that most
industrial manipulators already have some kind of
positioning controller is the motivation behind our
approach. Also, a number of methodologies exist for the
development of robust positioning controllers for direct and
non-direct robot manipulators (6 ).

In general, the end-point position of a robot
manipulator that has a positioning controller is a dynamic
function of its input trajectory vector, e, and the external
force, f. Let G and S be two lp stable mappings that describe
the robot end-point position, y. in a global coordinate frame.
(f is measured in the global coordinate frame also.)

y-G(e)+S(f) (1)
The assumption that linear superposition (in equation 1)

holds for the effects of f and e is useful in lmderstanding the
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Figure 2: V1 and V2 describe the contributions of
both inputs, e, and e2-

We assume Figure 2 is valid for representation of the non-
linear case also. In other words, considering equations 3
and 4 as original equations for dynami~: behavior of the
robots, one can arrive at operators VI and V2 to show the
contributions of el and e2 on the contact force. We assume
V I and V2 are two Lp-stable operators" in other words
VIle,): Lpn-Lpn and V2 (e2): Lpn -Lp" and also there
exsit positive scalars (XI, (X2, ~I and ~2 su~:h that:

IIVI(el)lIp~(Xlllellip + ~I (9)

IIV2(e2)llp~(X21Ie2I1p + ~2 (10)

See Appendix A for some definitions on th~~ lp stability.

function matrices, then:

f2- [5,+52+ G2H2)-'[G,e,-G2r2) (16)
We plan to choose a class of compensators, H2' to control the
contact force with the input command r2' This controller
must also guarantee the stability of the closed-loop system
shown in Figure 3. Note that the robot sensitivity functions
and the electronic compliancy , ~ H2' add together to form
the total sensitivity of the system. If ~-Q, then only the
sensitivity functions of two robots add together to form the
compliancy for the system. By closing the loop via H2, one
can not only add to the total sesitivity but also shape the
sensitivity of the system.

When two robots are not in contact with each other, the
actuaJ end-point position of each robot is almost equal to its
input trajectory command governed by equation 1 (with
f-Q). When the robots are in contact with each other, the
contact force on the second robot follows r2 according to
equations 11-15. The input command vector, r2, is used
differently for the two categories of maneuverings of the
second robot; as an input trajectory command in
unconstrained space (equation 1 with f-Q) and as a
command to control the force in constrained space.

Stabilit~
The objective of this section is to arrive at a sufficient

condition for stability of the system shown in Figures 3.
This sufficient condition leads to the introduction of a class
of compensators, H2' that can be used to develop compliancy
for the class of robot manipulators that have positioning
controllers. The following theorem (Small Gain Theorem)
(7,8) states the stability condition of the closed-loop system
shown in Figure 4. A corollary is given to represent the size
of ~ to guarantee the stability of the system.
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Th~ C1os~d-loop !;~st~m for Two Rob:Q1s.
The control architecture in FigurE' 3 shows how we

develop compliancy in the system. ~ is a compensator to
be designed for the second robot. The input to this
compensator is the contact force, f2. The compensator output
signal is being added vectorially with the input command
vector, r2, resulting in the error signal, e2 for the second
robot manipulator. One can think of this architecture as a
system that allows the second robot to "control" the force and
the first robot to" control" the position.
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Figure 3: The Closed-loop System, the first robot
controls the position and the second robot controls

the force.

There are two feedback loops in the system; the first
loop (which is the natural feedback loop). iis the same as the
one shown in Figure 1. This loop shows how the contact force
affects the robots in a natural way when two robots are in
contact with each other. The second feedback loop is the
controlled feedback loop.

If two robots are not in contact, ~hen the dynamic
behavior of each robot reduces to the one represented by
equation 1 (with f-O). which is a simple tracking system.
When the robots are in contact with each other. then the
contact forces and the end-point positions (If robots are given
by f,. f2. Y, and Y2 where the following equations are
true:

y,-G,(e,J+S,(f,J (11)

f2 -S2-'(Y2-G2(e2JJ (12)

y, -Y2 (13)

f,+f2-O (14)

e2-r2+H2(f2) (15)
If all the operators are considered linear transfer
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Figure 4: Two Manipulators with Force Feedback
Compensator.

If conditions I, II and III hold:

I. VI and V2 are Lp- stable operators, that is VI(e,J:

L np~ L np and V2(e2J: L np~ L np and:

oj II VI(eIJllp( ~,II e,llp+ ~, (17)

b) II V2(e2Jllp( ~211 e2l1p+ ~2 (18)

n. H2 is chosen such that mapping ~(f2J is Lp-stable, that

is

0) H2(f2J: Lnp~Lnp (19)

b) IIH2(f2Jllp(~3I1f2I1p+~3 (20)

m. and~2~3<1 (21)
then the closed loop system in Figure 4 is stable. The proof is
given in Appendix A. The following corollary develops a
stability bound if H2 is selected as a linear transfer
function matrix.

Coro1la~
The key parameter in the proposition is the size of

~2~3. According to the proposition, to guarantee the stability
of the system, H2 must be chosen such that ~2~3<1. IfH2 is
chosen as a linear operator (the impulse response) while all
the other operators are still nonlinear, then:

II H2(f2J lip ( .,. II f2 lip (22)

where: .,. -0" max (N J (23)



Suppose, the first robot is an ideal positioning
system. In other words, 5, has a zero gain. Therefore the
contact force and the position of contact point between two
robots are:
f200 -(52 + G2H2)-' (G, e, -G2 r2 ) (29)

Y'oo -G,[el) (30)
The first robot controls the position of the contact point, while
the other controls the contact force. Generalizing this
concept to n robots, one robot controls the position of the
contact point while the other robots control the n-1 contact
forces such that:

fl+f2+f3+ +fn-0 (31)

Summa~ and Cnnclusinn
A new architecture for compliance control of two

cooperating robots has been investigated using unstructured
models for dynamic behavior of robots. Each robot end-
point follows its position input command vector "closely"
when the robots are not in contact with each other. When two
robots come in contact with each other, one robot controls the
position of the contact point, while the other controls the
contact force. The unified approach of modeling robots is
expressed in terms of sensitivity functions. A bound for the
global stability of the manipulators has been derived. For
the stability of two robots, there must be some initial
compliancy in either robot. The initial compliancy in the
robots can be obtained by a non-zero sensitivity function for
the tracking controller or a passive compliant element such
as an RCC.

Example
Consider two one-degree of freedom robots with G

and 5 in equation 1 given as:
G [ ) 0.85, 8 -[8/5 + 1)[8/9+ 1)[8/190 + 1)[8/240+ 1)[8/290+ 1)

D" maxI indicates the maximum singular value, and N is a
matrix whose ijth entry is II H2(.~J II,. In other words, each
member of N is the L, norm of each corresponding member
of H2(.) (pulse response). Considering inequality 22, the
tJIird stability condition, inequality 21, can be rewritten as:

'i' «2< 1 (24)
To guarantee the closed loop stability, '/'«2 must be smaller
tJIan unity, or, equivalently:

'i' <-1- (25)
«2

To guarantee the stability of the closed loop system, H2 must
be chosen such its "size" is smaller than t},.e reciprocal of the
"gain" of the forward loop mapping in FigllTe 4. Note that '/'
represents a "size" of H2 in the singular value sense.

When all the operators are linear transfer function
matrices one can use Multivariable Nyquist Criterion to
arrive at the sufficient condition for sta!:,ility of the closed
loop system. This sufficient conditicill leads to the
introduction of a class of transfer function matrices, ~, that
stabilize the family of linearly treated robot manipulators.
The detailed derivation for the stability condition is given
in Appendix B. Appendix C shows that the stability condition
given by Nyquist Criterion is a subset of tbe criteria given by
the Small Gain Theorem. Using the resu:lts in Appendix B,
the sufficient condition for stability is given by inequality
26.

D"max(H2) < - (r~, ~ '-1" '
(5 1 5 )- G ) V'CAJ,e (0,00) (26)

D"max ,+ 2 2
Similar to the nonlinear case, H2 must bE' chosen such that
its "size" is smaller than the reciprocal of the "size" of the
forward loop mapping in Figure 5 to guarantee the stability
of the closed loop system. Note that in inequality 26 D"max
represents a "size" of ~ in the singular value sense.

er2 ~T\ 2 -, -1

~~(51+ 52) G.,

-f2 ~
~- C

e

1
G2(6) -(6/6 + 1)(6/10+ 1)(6/200 + 1)(6/250 + 1)(6/300+ 1)

8 ( ) 0.1 ~( ) 0.05
16 -(6/4+1)(6/8+1) 6 -(6/5+1)(6/9+1)

Both robots have good positioning capability (small gain for
8). The poles that are located at -250, -300, -290, -240
show the high frequency modes in the robots. The stability
of the robots when they are in contact with each other is
analyzed. If we consider H2 as a constant gain, then
inequality 27 yields that for ~(0.08 the value of I G2~1 is
always smaller than 18,+ 821 for all OOE (0,00). Figure 6
shows the plots of I G2~ 1 and 181+ 821 for three values of
H2. For H2- 0.05 the system is stable with the closed loop
poles located at (-456.71, -147.24:t172.37j, -9.41, -
8.38, -5.62, -4.58) while H2-1 results in unstable
system with the closed loop poles located at (-800.88,-
9.03, -8.05, -5.05, -4.13, 23.98:t474.35j). Note that
the stability condition derived via inequality 27 is a
sufficient condition for stability; many compensators can
be found to stabilize the system without satisfying inequality
27. Figure 6 shows an example (H2-0.25) that does not
satisfy inequality 27 however the system is stable with closed
loop poles at (-598.64, -76.87:t298.04j, -9.1, -8.15, -
5.19, -4.36). If one uses root locus for stability analysis,
for ~(O. 75 all the closed loop poles will be in the left half
plane. Once a constant value for stabilizing H2 established,
one can choose a dynamic compensator to filter out the high
frequency noise in the force measurements.

H ~~2-

Figure 5: In the Linear Case, V2-(S1 + S2)-'G2 and

V,-(S1+ S2)-'G1

Consider n=l (one degree of freedom system) for
more understanding about the stabilit:y criterion. The
stability criterion when n=l is given by in,equality 27.

IG2H21 < 181+821 \/ooe(O,oo) (27)
where 1.1 denotes the magnitude of a transfer function.
Since in many cases ~~1 within the bandwidth of the
tracking controller of each robot, 000' then H2 must be chosen
such that:

IH21 < 181+ 821 \/ooe(O,ooo) (28)
Inequality 28 reveals some facts about the size of H2. The
smaller the sensitivity functions of the robot manipulators
are, the smaller H2 must be chosen. In the "ideal case", no
H2 can be found to allow two perfect; tracking robots
(81-82 -OJ interact with each others. In other words, for
tJ1e stability of the system shown in Figure 3, there must be
some compliancy in either first or se<:ond robot. RCC,
structural dynamics, and the tracking controller stiffness
form the compliancy on the robot.

.18..1

IThe maximum singular value of a mat;rix A, O"max(A) is
defined as:

1 AziO"max(A) -mox TZT

where z is a non-zero vector and 1.\ denotes the
Euclidean norm.



L np the resulting output belongs to L np. Moreover. the norm
of the output is not larger than (X2 times the norm of the input
plus the offset constant ~.

Definition 6: The smallest (X2 such that there exists a ~ so

that inequality b of Definition 5 is satisfied is called the gain

of the operator V2[o).

Definition 7: Let V2[o): Lnpe- Lnpe. The operator V2[oj

is said to be causal if:

V2[e21T- V2(e2T) \,'T<oo end \,' e2ELnpe

Figure 6; I G2H21 < 151 + 521 is a suffic:ient condition

for stability.

Proof of the nonlinear stability proposition
Defme the closed-loop mapping A:(e,.r2)- e2 (Figure 4).

e2 -r2 + H2 (V,(e,)-V2(e2)) (AI)

For each finite T, inequality A2 is true.

Ile2Tllp( Ilr2Tllp+

II H2(V,(e,)-V2(e2))Tllp 'l/T<oo (A2)
AppendiX A

Definitions 1 to 7 will be used in the stability proof of
the closed-loop system (7,8).

Definition 1: For all pe(1,oo), we label as Lnp the set

consisting of all functions f-[f1,f2 fn)T: (O,oo)_~n

such that:
00

fl IP dt <00 for -1, 2,...,n

Definition 2: For all Te(O. 00), the fW1ction fT definedby:

OltlT
fT -

T<t

is called the truncation of f to the interval [0, TJ.

Definition 3: The set of all functions f-[fl, f2'.'" f nJT:

[O.oo)~lRn such thatfT E L np for all finite T is denoted by

L npe. f by itself mayor may not belong to L np.

Definition 4: The norm on L npis defined by:

H2(V,(e,)-V2(e2)) is Lp- stable, therefore, using
inequalities 17, 18, and 20:

Ile2Tllp~11 r2T II p+ tX3tX1 lIe1Tllp+ tX3tX2 lIe2Tllp+

tX3~1 + tX3~2 + ~ 3 VT < 00 (A3)

Since tX3tX2 is less than unity:

lie II ~ Ile'Tllp + IIr2Tlip
2T p 1-tX3tX2 1-tX3tX2

+ tX3(~1+ ~2)+ ~3 VT<oo (A4)
1-tX3tX2

Inequality A4 shows that e2(.) is bounded over (0, T).
Because this reasoning is valid for every finite T, it follows
that e2(.)eL"pe, i.e., that A:L"pe~L"pe' Next we show that
the mapping A is Lp-stable in the sense of definition 5. Since
IIr211p and Ile,lIp< 00 (they both belong to L"p space),
then from inequality A4:

IIe2Tllp < 00 VT<oo (A5)
In the limit when T -+00:

IIe211p < 00 (A6)
Inequality A6 implies e2 belongs to L "p -space whenever r2
and e, belong to L "p- space. With the same reasoning from
equations AI to AS, it can be shown that inequality A7 is true.1/2

n
}"' II f.llp2
"i":1

II fll p -

where IIfllip is defined as:
IIp

II fl lip -

IIe211p ( Ile,llp+ IIr211p + (X3(~'+~2)+~3(A7)
1- (X3(X 2 1- (X3 (X 2 1- (X3(X2

Inequality A7 shows the linear boundedness of e2.
(Condition b of definition 5) Inequality A7 and A6 taken
together, guarantee that the closed-loop mapping A is Lp-
stable.

Appendix B
The objective is to find a sufficient condition for

stability of the closed-loop system in Figure 5 by Nyquist
Criterion. The block diagram in Figure 5 can be reduced to
the block diagram in Figure Bl when all the operators are
linear transfer function matrices.

r2
~"2

00

J WI! fl IP dt
a

where WI is the weighting factor. WI is particularly useful
for scaling forces and torques of different units.

Definition 5: Let V2(.):L"pe~L"pe. We say that the

operator V2(.) is L p' stable, if:

a) V2(.): L"p~ L"p

b) there exist finite real constants (X2 and 112 such that:

II V2(e2) IIp( (X2 lIe2l1p+ ~2 V e2E L"p

According to this definition we first assume that the
operator maps L "pe to L "pe. It is clear that if one does not
show that V2(.):L"pe~L"pe, the satisfacticln of condition (a)
is impossible since L "pe contains L"p. Once the mapping of
V2(.) from L"pe to L"pe is established, then we say that the
operator V2(.) is lp-stable if whenever the input belongs to

UI-.;:

el-j -
G2H281.8281 :J..-

Figure B1: Simplified Block Diagram of the System
in Figure 5



~ and V2 are linear operators.

II H2(f2Jllp ("VII f211p

II V2(e2J lip ( }III e2 lip

where:

(Cl)

(C2)

Ji- O"mlx(QJ, and Q is the matrix whose ijth entry is given by

(QJ1J- SUP<.>I(V2J1JI,

V- O"max(RJ. and Ris the matrix whose ijth entry is given by

(RJ1J- sup..,lfH2J1JI

According to the stability condition, to guarantee the closed
loop stability Jl. v < 1 or:
V< 1. (C3)

Jl.

Note that the following are true:

D"max(VV ( Jl. Vooe (0, 00) (C4)

D"max(H2) ( V Vooe (0, 00) (C5)

Substituting C4 and C5 into inequality C3 which guarantees
the stability of the system, the following inequality is
obtained:

O'max(H2) < Vooe (0,00) (C6)
1

D"max(V2)

I
O"max (H2)« (S S )-1 G ) Vwe(O,oo) (C7)

O"max 1+ 2 2

Inequality C7 is identical to inequality 26. This shows that
the linear stability condition by the multivariable Nyquist
Criterion is a subset of the general condition given by the
Small Gain Theorem.
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There are two elements in the feedback loop;
G2H28,-' and 828,-' .8281-' shows the natural force
feedback while G2H28,-' represents the controlled force
feedback in the system. The objective is to use Nyquist
Criterion (5) to arrive at the sufficient condition for stability
of the system when H2 -o. The following conditions are
regarded:

1) The closed loop system in Figure Bl is stable if H2-0.
This condition simply states the stability of two robot
manipulators. (Figure 2 shows this configJLlration.)
2) H2is chosen as a stable linear transfer function matrix.
Therefore the augmented loop transfer function (~H28,-'
+ 828,-' ) has the same number of unstable poles that ~8,-
, has. Note that in many cases ~8,-' is a stable system.

3) Number of poles on Jcu axis for both loop 828,-' and
(G2H28,-'+828,-') are equal.

Considering that the system in Figure Bl is stable
when ~-O, we plan to find how robust the system is when.
G2H281-' is added to the feedback loop. If the loop transfer
function 8281-' (without compensator, H2) develops a
stable closed-loop system, then we are looking for a
condition on H2 such that the augmen1;ed loop transfer
function (G2H28,-' + 82 8,-') guarantees the stability of the
closed-loop system. According to the NyqlJlist Criterion, the
system in Figure Bl remains stable if t:he anti-clockwise
encirclement of the det(G2H28,-'+ ~ 8,1+ In) around the
center of the s-plane is equal to the number of unstable poles
of the loop transfer function (G2H28,-'+ 82 8,-').
According to conditions 2 and 3, the loop j;ransfer functions
828,-' and (G2H28,-'+828,-') both have the same
number of unstable poles. The closed-lo.op system when
H2-0 is stable according to condition 1; the encirclements
ofdet(828,-1+ln) is equal to unstable poles of 828,-'.
Since the number of unstable poles of (132H28,-'+8281-')
and that of 82 8,-' are the same, therefore for stability of the
system det(G2H28,-'+ 82 81-'+ In) must have the same
number of encirclements that det(82 8,-' + In) has. A
sufficient condition to guarantee the equality of the number
of encirclements of det(G2H28,-' + 52 8,-' + In) and that of
det(82 5,-' + In) is that the det(G2H28,-'. 525,-' + In) does
not pass through the origin of the s-plane for all possible non-
zero but finite values of H2' or

det (G2H25,-'+ 525,-'+ In)- 0 Vcue(O,oo) (B1)

If inequality B1 does not hold then there must be a non-zero
vector z such that:

(G2H28,-' + 52 8,-' + In) z- 0 (B2)

or: ~H28 1-'Z-- (828,-' + In) Z (B3)

A sufficient condition to guarantee that eqLlality B3 will not
happen is given by inequality B4.

umax (G2H28,-')<Umln (525,-'+ln)Vcue(0,OO) (B4)

or a more conservative condition:
1 -

umax (H2)« (8 5 )-, G ) VCUE:(O,oo) (B5)
umax ,+ 2 2

Note that (51 + 82)' ~ is the transfer function matrix that
maps e2 to the contact force, f2 when e,-O.. Figure 5 shows
the closed-loop system. According to the result of the
proposition, H2 must be chosen such that the size of H2 is
smaller than the reciprocal of the size of the forward loop
transfer function, (5,+52)'G2.

Appendix C
The following inequalities are true when p-2 and


